G proteins regulate dihydropyridine binding to moss plasma membranes.

نویسندگان

  • K S Schumaker
  • M J Gizinski
چکیده

The role of calcium as an activator and regulator of many biological processes is linked to the ability of the cell to rapidly change its cytoplasmic calcium levels. Calcium acts as an intracellular messenger in hormone-induced bud formation during the development of the moss Physcomitrella patens. Calcium transport and ligand binding studies have implicated plasma membrane-localized 1, 4-dihydropyridine (DHP)-sensitive calcium channels in this increase in cellular calcium. To understand the regulation of the moss calcium channel, we investigated the involvement of GTP binding regulatory proteins (G proteins). Guanosine 5'-(gamma-thio)triphosphate (GTPgammaS), a nonhydrolyzable GTP analog that locks G proteins into their active state, stimulated DHP binding to high affinity receptors in the moss plasma membrane. DHP binding was measured as the ability of the DHP agonist Bay K8644 or the DHP antagonist nifedipine to compete with the DHP arylazide [3H]azidopine for binding to moss plasma membranes. G protein stimulation of binding was seen when competition was carried out with either nifedipine or Bay K8644. G proteins regulated the rates of association and dissociation of bound [3H]azidopine, and stimulation was dependent on GTPgammaS concentration. Guanosine 5'-(beta-thio)diphosphate, a GDP analog that locks G proteins into their inactivated state, did not affect the dose dependence of either the agonist or the antagonist. These results suggest that G proteins may act via a membrane-delimited pathway to regulate calcium channels in the moss plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1,4-Dihydropyridine binding sites in moss plasma membranes. Properties of receptors for a calcium channel antagonist.

An increase in cytoplasmic calcium is an early event in hormone (cytokinin)-induced vegetative bud formation in the moss Physcomitrella patens. Whole cell and calcium transport studies have implicated 1,4-dihydropyridine-sensitive calcium channels in this increase in cellular calcium. To understand the molecular nature of the dihydropyridine-sensitive calcium channel, we have established condit...

متن کامل

INVESTIGATIONS ON THE DRUG-PROTEIN IN TERAC TION OF CERTAIN NEW POTENTIAL LOCAL ANAESTHETICS

Generally, plasma proteins owe their binding capacity to the presence of aminoacid units which enter into intra- and intermolecular hydrophobic bonding with a diverse range of endo- and exogenous chemical substances. The intermolecular interactions between the hydrophobic areas of drug molecules and those of plasma proteins play an important role in drug-macromolecular complex formation and...

متن کامل

Calcium binding to extracellular sites of skeletal muscle calcium channels regulates dihydropyridine binding.

The binding of dihydropyridine (PN200-110) to skeletal muscle microsomes (which were 84% sealed inside-out vesicles) was not influenced by the addition of calcium or magnesium nor by addition of their chelators (EDTA or EGTA) unless the vesicles were pretreated with the calcium-magnesium ionophore A23187 and EDTA to remove entrapped cations. Separation of inside-out vesicles from right-side-out...

متن کامل

tudy on sex steroid-binding proteins (with emphasize on 17 -estradiol) in plasma of female and juvenile kutum (Rutilus frisii kutum)

A sex steroid-binding protein (SBP) that binds to 17 b-estradiol with high affinity and moderate capacity was identified in the plasma of female and juvenile of kutum (Rutilus frisii kutum) sampled during the early stage of gonadal maturation in October and prior to spawning in March. Mean maximum specific binding (Bmax) and equilibrium dissociation constant (Kd) of the fish were as follows: In...

متن کامل

A novel 1,4-dihydropyridine-binding site on mitochondrial membranes from guinea-pig heart, liver and kidney.

The 1,4-dihydropyridine (+/-)-[3H]nitrendipine reversibly binds to mitochondrial preparations from guinea-pig heart with a dissociation constant (Kd) of 593 +/- 77 nM and a maximum density of binding sites (Bmax.) of 1.75 +/- 0.27 nmol/mg of protein. This low-affinity high-capacity 1,4-dihydropyridine-binding site does not discriminate between the enantiomers of nitrendipine and is also found i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 35  شماره 

صفحات  -

تاریخ انتشار 1996